A new information criterion for the selection of subspace models

نویسندگان

  • Masashi Sugiyama
  • Hidemitsu Ogawa
چکیده

The problem of model selection is considerably important for acquiring higher levels of generalization capability in supervised learning. In this paper, we propose a new criterion for model selection named the subspace information criterion (SIC). Computer simulations show that SIC works well even when the number of training examples is small.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Analytic Approach to Model Selection — Subspace Information Criterion

The problem of model selection is considerably important for acquiring higher levels of generalization capability in supervised learning. In this paper, we propose a new criterion for model selection called the subspace information criterion (SIC). Computer simulations show that SIC works well even when the number of training examples is small.

متن کامل

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...

متن کامل

A new quadratic deviation of fuzzy random variable and its application to portfolio optimization

The aim of this paper is to propose a convex risk measure in the framework of fuzzy random theory and verify its advantage over the conventional variance approach. For this purpose, this paper defines the quadratic deviation (QD) of fuzzy random variable as the mathematical expectation of QDs of fuzzy variables. As a result, the new risk criterion essentially describes the variation of a fuzzy ...

متن کامل

Model Selection Based on Tracking Interval Under Unified Hybrid Censored Samples

The aim of statistical modeling is to identify the model that most closely approximates the underlying process. Akaike information criterion (AIC) is commonly used for model selection but the precise value of AIC has no direct interpretation. In this paper we use a normalization of a difference of Akaike criteria in comparing between the two rival models under unified hybrid cens...

متن کامل

A New Model Selection Test with Application to the Censored Data of Carbon Nanotubes Coating

Model selection of nano and micro droplet spreading can be widely used to predict and optimize of different coating processes such as ink jet printing, spray painting and plasma spraying. The idea of model selection is beginning with a set of data and rival models to choice the best one. The decision making on this set is an important question in statistical inference. Some tests and criteria a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000